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Fluctuations in fluid velocity and fluctuations in electric fields may both give rise to forces acting on small
particles in colloidal suspensions. Such forces in part determine the thermodynamic stability of the colloid. At
the classical statistical thermodynamic level, the fluid velocity and electric field contributions to the forces are
comparable in magnitude. When quantum fluctuation effects are taken into account, the electric-fluctuation-
induced van der Waals forces dominate those induced by purely fluid-mechanical motions. The physical
principles are applied in detail for the case of colloidal particle attraction to the walls of the suspension
container and more briefly for the case of forces between colloidal particles.
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I. INTRODUCTION

Fluctuations in thermodynamic field parameters may give
rise to forces �1–6� acting on colloidal particles. Examples of
such field parameters include velocity fields �7� within the
fluid surrounding the particle and local electric fields. Our
purpose is to examine the magnitudes of these two force
effects. We seek to ascertain which of these forces has the
dominant effect on the thermodynamic properties of colloi-
dal suspensions.

The classical statistical thermodynamic contribution to
fluctuations forces is scaled by the thermal energy kBT. The
forces due to quantum-mechanical zero-point fluctuations in-
volve a frequency scale �� of motion and are thereby scaled
by the energy quantum ���. The total magnitude of such
forces depends upon whether or not the fluctuations are clas-
sical or quantum mechanical in nature. We find for tempera-
tures in the neighborhood of room temperature that the elec-
tric field fluctuation force �8–15� dominates the hydro-
dynamic fluctuation force �16� in the fully quantum-
mechanical theory.

The Einstein theory of purely classical statistical thermo-
dynamic fluctuation forces will be reviewed in Sec. II. The
general results are employed for the specific example of the
force on a colloidal spherical particle due to a neighboring
hard wall. The hydrodynamic case is discussed in Sec. III
while the electric field case is discussed in Sec. IV. The gen-
eral theory of quantum-mechanical fluctuations is explored
in Sec. V and the frequency scales of both fluid mechanical
and electrical fluctuations are considered in Sec. VI. The
frequency scales are such that the fluid-mechanical fluctua-
tion forces are classical while the electric dipole fluctuation
forces are quantum mechanical. The latter thereby dominate
the former as discussed in Sec. VII. Although the electric
field static quantum fluctuation forces dominate the classical
fluid static fluctuation forces, the fluid forces are nonetheless
observable. If the bandwidth of experimental observations of
Brownian motion coincides with a frequency regime wherein
fluid mechanics holds true, then fluid fluctuation forces may
be �and have been� measured. This point is discussed in Sec.
VIII wherein the formula for the fluid and electrical fluctua-
tion forces are exhibited for two well separated spheres. In
the concluding section, the electric fluctuation forces are
shown to more strongly determine the phase properties of a

colloid, i.e., whether the colloidal particles will form a
smooth colloidal suspension or whether the colloidal par-
ticles will undergo phase separation.

II. STATISTICAL THERMODYNAMICS

Consider two coordinate sets Q= �Q1 , . . . ,Qm� and
X= �X1 , . . . ,Xn�. For the moment, let us fix Q and assume
that X undergoes classical thermal fluctuations �17�. The
Einstein probability �18� P of exhibiting a deviation
�X= ��X1 , . . . ,�Xn� from thermal equilibrium has a Gauss-
ian form determined by an activation free energy �F. The
activation free energy is the minimum isothermal work done
on the system by the environment in order to produce the
fluctuation �X, whence it follows that

P � e−�F/kBT,

�F =
1

2�
j,k

n

G−1
jk�Q��Xj�Xk, �1�

wherein the matrix �Gjk�Q�� describes an effective Hooke’s
law compliance. The static classical fluctuation-response
theorem dictates that

�Xi�Xj = kBTGij�Q� , �2�

which follows directly from Eq. �1�. The forces
f = �f1 , . . . , fm� conjugate to Q= �Q1 , . . . ,Qm� may be derived
from the free energy

f l = −
��F

�Ql
= −

1

2�
j,k

n
�G−1

jk�Q�
�Ql

�Xj�Xk. �3�

The mean value of this fluctuation force

f̄ l = −
1

2�
j,k

n
�G−1

jk�Q�
�Ql

�Xj�Xk �4�

may be evaluated via Eq. �2� as

f̄ l = −
kBT

2 �
j,k

n

Gkj�Q�
�G−1

jk�Q�
�Ql

,

f̄ l =
kBT

2

�

�Ql
ln�det�Gjk�Q��� . �5�
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Employing a reference matrix �Gjk
�0�� that is independent of

Q, we may write Eq. �5� in terms of an effective potential
U�Q�, i.e.,

f̄ l = −
�U�Q�

�Ql
,

U�Q� =
kBT

2
ln det�G−1�Q�G�0�� . �6�

If G�Q� obeys the Green’s function matrix equation

G�Q� = G�0� + G�0���Q�G�Q� , �7�

then

U�Q� =
kBT

2
ln det�1 − G�0���Q��

U�Q� = −
kBT

2 �
n=1

�
1

n
Tr�G�0���Q��n. �8�

The central result of this section resides in Eqs. �6�–�8�
which describe the effective potential U�Q� of classical sta-
tistical thermodynamic fluctuation forces in terms of the de-
terminants of the compliance matrices. The quantum-
mechanical version of fluctuation forces will be briefly
discussed in the following work where we will explicitly
compute the situation shown in Fig. 1. We consider two con-
tributions to the fluctuation forces between the sphere and
the wall, namely, �i� fluid velocity fluctuations and �ii� elec-
tric field fluctuations.

III. FLUID VELOCITY FLUCTUATIONS

For a single metal sphere �in a fluid� with momentum p
and position r, the minimum isothermal work required to
produce the momentum is given by the total kinetic energy

�F = p ·
1

2M�r�
· p =

1

2�
j,k

3

M−1
jk�r�pjpk, �9�

where the mass matrix �Mjk�r�� plays the role of the compli-
ance in Eq. �1�. The static fluctuation response Eq. �2� now
reads as the equipartition theorem

pjpk = kBTMjk�r� . �10�

Let us consider the mass matrix �Mjk�r�� in more detail.
If the sphere were very far from the wall z=�, then the

mass matrix would be given by

M�0�
jk = � jk�M + �� = � jk�M +

2	
a3

3
� , �11�

wherein 
 is the mass density of the fluid and M is the mass
of the sphere. The Euler mass �, which is half the mass of
the displaced fluid, has the following physical interpretation
�19�. The kinetic energy of a sphere moving slowly with
velocity v through an infinite bulk fluid is given by

Ktotal = Kparticle + Kfluid =
1

2�
j,k

3

Mjk
�0�v jvk,

Ktotal =
1

2
M	v	2 +

1

2
�	v	2. �12�

The mass M enters into the particle kinetic energy Kparticle
= �1/2�M	v	2. If the particle moves through the fluid, then the
fluid exhibits a dipolar back flow contribution Kfluid
= �1/2��	v	2 to the total kinetic energy.

When the sphere is at distance z�� from the wall, the
back-flow fluid mass current vector must have a zero com-
ponent normal to the boundaries. The fluid kinetic energy
thereby depends on z. In the limit in which z�a, the mass
matrix �Mjk�z�� of the sphere is well known �20�. It is


M + ���z� 0 0

0 M + ���z� 0

0 0 M + ���z�
� , �13�

wherein

���z� = ��1 +
3

16
�a

z
�3

+ ¯  ,

���z� = ��1 +
3

8
�a

z
�3

+ ¯  . �14�

The potential energy of the sphere induced by fluid momen-
tum fluctuations is thereby

Ufluid�z� =
kBT

2
ln det�M−1�z�M�0�� , �15�

which reads

Ufluid�z� = −
3�kBT

8�M + ��
�a

z
�3

+ ¯

with � =
2	
a3

3
and a  z . �16�

From fluid velocity thermodynamic fluctuations, it follows
that the sphere will be attracted to the wall with a potential
proportional to the temperature and inversely proportional to
the third power of the distance from the wall.

FIG. 1. Shown is a metal sphere of radius a submerged in a fluid
at a distance z from a hard wall. We seek to compute the fluctuation
forces on the sphere due to the presence of the wall in part to
establish the physically dominant contributions.
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IV. ELECTRIC DIPOLE MOMENT FLUCTUATIONS

If one places a neutral conducting sphere in the neighbor-
hood of a perfectly conducting wall, then charge rearrange-
ments within the sphere will create fluctuating electric dipole
moments. The fluctuating dipole moments will induce an at-
traction between the sphere and the wall as will now be
shown. We again assume that the sphere radius is much less
than the distance between the sphere and the wall az. The
dipole moment d of the conducting sphere will induce a
surface charge on the perfectly conducting wall usually de-
scribed in terms of an “image” dipole moment di. The inter-
action between the dipole moment and the image is given by

�F =
d · di − 3�d · n��di · n�

16z3 . �17�

The image dipole moment is related to the dipole moment of
the sphere via

dz = diz, dx = − dix, and dy = − diy , �18�

so that the interaction free energy reads

�F = − �dx
2 + dy

2 + 2dz
2

16z3 � . �19�

Taking the thermodynamic average Udipole=�F yields

Udipole�z� = − � CT

16z3� + ¯ �a  z� ,

CT = dx
2 + dy

2 + 2dz
2, �20�

wherein the Hamaker constant �21� CT is determined by the
polarizability �T via

kBT�T = dx
2 = dy

2 = dy
2 �a  z� ,

CT = 4�T = 4a3 �conducting sphere� . �21�

Altogether, the final attractive potential energy is

Udipole�z� = −
kBT

4
�a

z
�3

+ ¯ �a  z� . �22�

Note the similarity between the fluid fluctuation potential
in Eq. �16� and the dipole fluctuation potential in Eq. �22�.
Both potentials obey U�−�kBT�a /z�3� with proportionality
constants of similar order unity. It would at this stage appear
that the strengths of electrical and fluid-mechanical fluctua-
tion forces are comparable in magnitude. However, this has
only been proven at the classical statistical thermodynamic
level of computation. Let us now consider quantum-
mechanical fluctuations.

V. QUANTUM FLUCTUATIONS

In the quantum-mechanical theory of fluctuations, the
static response function kBTGij�Q� at zero temperature in Eq.
�2� is replaced by a complex-frequency- ��-� dependent re-
sponse function kBTGij�Q ,�� which obeys a dispersion rela-
tion with Im��0 of the form

Gij�Q,�� =
2

	
�

0

� � Im Gij�Q,� + i0+�d�

��2 − �2�
. �23�

The static response function is then the zero-frequency limit

Gij�Q� � lim
�→0

Gij�Q,�� ,

Gij�Q� �
2

	
�

0

�

Im Gij�Q,� + i0+�
d�

�
. �24�

The power spectrum of quantum noise corresponding to the
frequency-dependent response function Gij�Q ,�� obeys the
quantum-mechanical fluctuation dissipation theorem

1

2
���Xi�t�,�Xj�0��� = �

−�

�

Sij�Q,��e−i�td� ,

Sij�Q,�� =
ET���

	�
Im Gij�Q,� + i0+� ,

ET��� = ���

2
�coth� ��

2kBT
� . �25�

Employing the identity

ET���
kBT

= �
n=−�

�
�2

�2 + �n
2 ,

�n =
2	kBTn

�
, �26�

along with Eqs. �23�, �25�, and �26�, implies

1

2
��Xi�Xj + �Xj�Xi� = kBT �

n=−�

�

Gij�Q,i	�n	� . �27�

It is worthwhile to compare the quantum-mechanical fluctua-
tion Eq. �27� to the classical Eq. �2�:

�Xi�Xj = kBTGij�Q,0� � kBTGij�Q� . �28�

For a single fluctuating variable, say X=�iaiXi, one ob-
tains from Eq. �27� the expression

��X2� = kBT �
n=−�

�

G�Q,i	�n	� ,

G�Q,�� =
2

	
�

0

� � Im Gij�Q,� + i0+�d�

�2 − �2 . �29�

Employing the inequality

1

�2 + �n
2 �

1

�n
2 , �30�

and the definition for the X-motion frequency scale ��,
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��
2 = � 2

	G�Q,0���0

�

� Im G�Q,� + i0+�d� , �31�

in Eq. �29� yields the upper bound

	��X2� − kBTG�Q,0�	 � 2��
2 kBTG�Q,0��

n=1

�
1

�n
2 , �32�

i.e.,

� ��X2�
kBTG�Q,0�

− 1� �
1

12
����

kBT
�2

. �33�

From the inequality in Eq. �33� we find that a sufficient con-
dition for employing classical fluctuations is

��X2� � kBTG�Q,0� if ���  kBT �34�

in agreement with the classical Eq. �2�.

VI. FLUCTUATION FREQUENCIES

Our purpose is to estimate �� for both the fluid-
mechanical and the electrical fluctuation forces. We conclude
for “room temperature” that

���  kBT, fluid mechanics �classical� ,

��� � kBT, dipole moments �quantum� . �35�

The derivations follow.

A. Effective mass sum rule

If p denotes the momentum of a colloidal particle within
a fluid, then the dynamical mass of the particle obeys the
Kubo formula

Mij��� =
i

�
�

0

�

��pi�t�,pj�0���ei�tdt . �36�

From Eq. �36� one finds

i

�
��pi�t�,pj�0��� =

2

	
�

0

�

Im Mij�� + i0+�sin��t�d� ,

�37�

from which follows the equal time commutation sum rule

i

�
��ṗi,pj�� =

2

	
�

0

�

� Im Mij�� + i0+�d� . �38�

The imaginary part of the mass given in Eq. �38� is related to
the real part of the mechanical impedance by

Im Mij�� + i0+� =
Re Zij�� + i0+�

�
, �39�

where Zij is the mechanical impedance. For example, a
single sphere in a bulk fluid will have a mechanical imped-
ance appropriately derived from a frequency-dependent vis-
cosity in the form of Stokes law

Zij��� = 6	a�����ij . �40�

For static colloidal particles, the viscosity is not directly
measured through the diffusion coefficient �22�,

Dij = kBTZij
−1. �41�

However, the viscosity contributes to the interacting fluctua-
tion forces via the nonzero Matsubara frequency �23,24�
terms in Eq. �27�. If the microscopic force ṗ= f on the col-
loidal particle is derivable from a potential f=−gradV, then
the sum rule Eq. �38� obeys

2

	
�

0

�

� Im M�� + i0+�d� = �grad grad V� . �42�

On the other hand, from the dispersion relation

M��� =
2

	
�

0

� � Im M�� + i0+�d�

��2 − �2�
if Im � � 0, �43�

it follows that the static mass obeys

M =
2

	
�

0

�

Im M�� + i0+�
d�

�
. �44�

From Eqs. �42� and �44� one computes the Hooke’s law fre-
quency tensor

��
2 = M−1 · �grad grad V� . �45�

For a given principal X direction of the tensor, the hydrody-
namic frequency scale is given by

��
2 =

1

M
� �2V

�X2� . �46�

The mass of the colloidal particle is proportional to the
volume of the particle. The interaction V between the colloi-
dal particle and the fluid is spatially nonzero only in the
neighborhood of the particle surface. Thus, ��2V /�X2� is pro-
portional to the contact surface area. If the number of atoms
within the colloidal particle is denoted by N, then the number
of atoms on the colloidal particles surface is proportional to
N2/3. The frequency in Eq. �46� may be estimated by

��
2 � N−1/3�vib

2 �47�

where �vib is a typical atomic vibrational �say phonon� fre-
quency. As a numerical example, let us consider a colloidal
particle with N�1010 and with a vibrational frequency obey-
ing ��vib�kBT at room temperature. For such a colloidal
particle ����0.02kBT which is in the classical regime of
Eq. �35�.

B. Polarizability sum rule

If d denotes the electric dipole moment of a colloidal
particle within a fluid, then the polarizability of the particle
obeys

�ij��� =
i

�
�

0

�

��di�t�,dj�0���ei�tdt . �48�

From Eq. �48� one finds
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i

�
��di�t�,dj�0��� =

2

	
�

0

�

Im �ij�� + i0+�sin��t�d� ,

�49�

from which follows the equal time commutation sum rule

i

�
��ḋi,dj�� =

2

	
�

0

�

� Im �ij�� + i0+�d� . �50�

The electric dipole moment and its rate of change, summed
over all the charges within the colloidal particle, is given by

d = e�
k

zkrk,

ḋ = e�
k

zkṙk = e�
k

zkvk. �51�

The equal time commutators �vk ,rl�=−i�1�kl�1/Mk� and

�ḋi ,dj�=−i��ij�k�e2zk
2 /Mk� imply

2

	
�

0

�

� Im �ij�� + i0+�d� = �ij�
k
� e2zk

2

Mk
� . �52�

From the dispersion relation �with Im��0�

�ij��� =
2

	
�

0

� � Im �ij�� + i0+�d�

��2 − �2�
, �53�

it follows that the static polarizability obeys

�ij � �ij�0� =
2

	
�

0

�

Im �ij�� + i0+�
d�

�
. �54�

For a spherical colloidal particle,

��
2 = � 2

	�T
��

0

�

� Im ��� + i0+�d� . �55�

For a conducting sphere of volume V= �4	a3 /3� the fre-
quency scale

��
2 =

e2

�T
�

k
� zk

2

Mk
� =

4	e2

3V
�

k
� zk

2

Mk
� . �56�

The plasma frequency for a portion of condensed matter

�p
2 =

4	e2

V
�

k
� zk

2

Mk
� , �57�

is dominated by electronic oscillations �p
2 ��4	ne2 /m�

wherein m and n represent, respectively, the electron mass
and density of electrons per unit volume. The frequency
scale for dipolar fluctuations is then

��
2 =

�p
2

3
. �58�

A metallic plasma frequency is of order ���p /kB��105 K.
Equation �58� then implies ����kBT, as in Eq. �35�, for
temperatures near room temperature.

VII. QUANTUM DIPOLAR FORCES

It has been found at room temperature that fluid fluctua-
tion forces are classical and electric fluctuation forces are
quantum mechanical. An estimate of the quantum-
mechanical dipolar potential follows. The energy of interac-
tion between a conducting sphere and wall due to dipole
quantum fluctuations is found by summing the polarizability
over Matsubara frequencies as in Sec. V; i.e.,

Udipole�z� =
�0

z3 ,

�0 = −
kBT

4 �
−�

�

��i	�n	� . �59�

If we take into account the dielectric response function ����
of the fluid then

Udipole�z� =
�

z3 ,

� = −
kBT

4 �
−�

�
��i	�n	�
��i	�n	�

. �60�

The inclusion of the screening dipoles of the liquid in be-
tween the sphere and the wall leads to a reduction of the
coupling strength by the fraction

f =
�

�0
=

�−�

�
���i	�n	�/��i	�n	��

�−�

�
��i	�n	�

�61�

which �as will be shown in what follows� only slightly de-
creases the attractive effect.

A simple model for the polarizability will be found in
order to estimate the potential energy in Eq. �59�. We assume
that the polarizability has a single pole at frequency ��; i.e.,

���� �
�T��

2

��
2 − �2 . �62�

The residue at the pole has been fixed so that ��0���T.
Substituting Eq. �62� in Eq. �59� one finds for the interaction
potential

Udipole�z� � − � kBT

4z3 � �
n=−�

�
�T��

2

��
2 + �n

2 ,

Udipole�z� � − �����T

8z3 �coth� ���

2kBT
� . �63�

Since ����kBT one finds

Udipole�z� = −
����T

8
�1

z
�3

= −
���

8
�a

z
�3

. �64�

A simple pole model for the inverse dielectric response of

the fluid �−1��� takes the form ����=1− ��̃p /��2 wherein �̃p

is the plasma frequency of the liquid. Employing this ap-
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proximation in Eqs. �61� and �62� yields �after some tedious
algebra� the quantum interaction reduction factor

lim
T→0

f �
1

1 + 	�̃p/��	
� 1 �65�

since the plasma frequency entering into the insulating fluid
���� is much smaller than the plasma frequency entering into
the conducting spherical ����.

By comparing Eq. �64� to Eq. �16�, it seems that the di-
pole fluctuation forces are much larger than the fluid fluctua-
tion forces. We find that

Ufluid�z�
Udipole�z�

= � 3�

f�M + ��� kBT

���

. �66�

The term on the right-hand side of Eq. �66� in large paren-
theses is of order unity. Thus

Ufluid�z�
Udipole�z�

�
kBT

���

 1. �67�

Using typical plasma frequencies for metals, ��= ��p /�3�
��1016/ s� we see that the inequality in Eq. �67� holds by a
very large margin. If the colloidal particle mass density is
large compared with the fluid mass density, i.e., M ��, then
fluid fluctuation forces are further reduced relative to the
already dominant electrodynamic fluctuation forces.

We note, in passing, that the thermal quantum coherence
length scale for electromagnetic fluctuations is �T
= ��c /kBT� which is �7 �m at room temperature. Retarda-
tion effects imply that for distances large compared with the
thermal quantum coherence length �T, fluctuation forces
are purely classical. For distances less than �T quantum fluc-
tuations are important. For length scales of importance
in colloids, electromagnetic quantum fluctuations are thereby
dominant. For example, if the distance to the wall is
z�5 �m and the sphere radius is a�0.5 �m, then the elec-
tromagnetic fluctuation force is quantum mechanical. On the
other hand, to obtain �T for fluid fluctuations one must re-
place light velocity by sound velocity, which makes �T�fluid�
extremely small. We again conclude that fluid fluctuation
forces arise only from classical thermal fluctuations. As for
the quantum electrodynamic fluctuations, for distances less
than the thermal coherence length but possibly larger than an
optical wavelength scale �0, retardation would lessen the ef-
fect of quantum fluctuations by a factor ��0 /z� which at the
micrometer length scales of interest is not much less than
unity. Equation �67� is thereby still valid.

VIII. FLUID MOTION

The static classical fluid force between two spherical col-
loidal particles separated by r may be shown to be derived
from the potential

Ufluid�r� = − 3	2� kBT
2a6

�� + M�2��a

r
�6

�r � a� , �68�

wherein 
 is the fluid mass density, � is the Euler mass, and
M, is the bare mass of the colloidal particle. The above po-

tential is derived from a long time scale statistical averaging
over those fluid-mechanical fluctuations which otherwise in-
duce colloidal particle Brownian motion. Direct observation
�25,26� of Brownian motion forces require shorter time
scales. Typical experimental bandwidths for micrometer
scale colloidal particle size are about 0.1 MHz.

For two identical metallic colloidal particles separated by
r, the quantum electric field fluctuation potential is given by

Udipole�r� = −
3kBT

r6 �
n=−�

�

��i	�n	���i	�n	� for r � a .

�69�

In the single-pole approximation for ���� with the metallic
��0�=a3 we find that

Udipole�r� � − �3���

2
��a

r
�6

for r � a and ��� � kBT . �70�

Note that

Ufluid�r�
Udipole�r�

� � 
2a6

�� + M�2�� kBT

���
�  1. �71�

The very large magnitude of �� forbids direct observation of
the fluid fluctuations.

It is difficult, but not impossible, to estimate both electro-
dynamic and fluid-mechanical fluctuation forces in a regime
wherein the sphere is very close to the wall �z=a+h with
ha� and/or two spheres are very close to each other
�r=2a+h with ha�. We refer to this regime as the “close
regime.” For the sphere quite close to the wall

Ufluid wall�h� � −
kBT

2
ln�a

h
� + const �h  a� , �72�

yielding the fluid fluctuation force

Ffluid wall � −
kBT

2h
�h  a� . �73�

In the close regime for the electrodynamic fluctuation forces

Uelectric wall�h� � −
27

192
����a

h
� �h  a� , �74�

yielding the force of attraction

Felectric wall � −
27

192
����a

h2 � �h  a� . �75�

The force ratio in the close regime is

Ffluid wall

Felectric wall
� � kBTh

���a
�  1, �76�

since both inequalities kBT����electric� and ha hold
true by a large margin. Similarly, for two spheres wherein the
closest point from one sphere to another is given by ha,
one finds a similar ratio
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Ffluid spheres

Felectric spheres
� � kBTh

���a
�  1. �77�

In regimes in which colloidal objects are very close to one
another, the dominance of electrodynamic fluctuation forces
over fluid fluctuation forces is complete due to both coupling
strengths kBT��� and geometry ha. The electrical fluc-
tuation forces are thereby of more importance for applica-
tions on a micrometer to nanometer length scale.

IX. CONCLUSIONS

The general theory of quantum-mechanical fluctuations
was discussed with particular emphasis on computing the
frequency scales of motion from sum rules. The frequency
scales determine whether the fluctuations and thereby the
forces are classical or quantum mechanical in nature. We
have shown how fluctuations in fluid velocity fields and in
electric fields give rise to forces exerted on colloidal par-
ticles. Fluctuation forces were computed in detail for the case
of colloidal particles attracted to the walls of the suspension
container. The resulting van der Waals force has the form

Uwall�z� = − U1�a/z�3 for z � a . �78�

The electric field fluctuation contribution to U1 dominates
the fluid-mechanical contribution to U1 as in Eq. �67�. The
long ranged static attraction between two spherical particles

of radius a separated by a distance r has the van der Waals
form

Uparticle�r� = − U0�a/r�6 for r � a . �79�

The electric field fluctuation contribution to U0 dominates
the fluid-mechanical contribution to U0 as in Eq. �71�.

For the case of the fluid-mechanical fluctuation-induced
forces, we have employed a model with a frequency-
dependent mass which is equivalent to a frequency-
dependent viscous damping coefficient. Previous fluid-
mechanical experiments allow the Brownian particles to
move and measure the dynamic correlations in the displace-
ments and velocities. These occur on a time scale very slow
compared with the time scales of electric field fluctuations.
For that very reason, the quantum fluid fluctuations contrib-
ute a smaller amount to the static �long time averaged� fluid-
induced Casimir forces. At the level of classical statistical
thermodynamics, the fluid velocity and electric field contri-
butions to the static potential are comparable. When quantum
fluctuation effects are taken into account, the electric fluctua-
tion contribution to the potentials dominates the fluid-
mechanical contribution to the potentials as in Eqs. �67� and
�71�. The electric field fluctuation long ranged forces can be,
and have been �27,28�, observed by measuring phase sepa-
rations in some colloidal suspensions. Further work on col-
loidal forces in still other geometries would be of general
interest.
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